skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wing, Oliver_E J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Damage and disruption from flooding have rapidly escalated over recent decades. Knowing who and what is at risk, how these risks are changing, and what is driving these changes is of immense importance to flood management and policy. Accurate predictions of flood risk are also critical to public safety. However, many high‐profile research studies reporting risks at national and global scales rely upon a significant oversimplification of how floods behave—as a level pool—an approach known as bathtub modeling that is avoided in flood management practice due to known biases (e.g., >200% error in flood area) compared to physics‐based modeling. With publicity by news media, findings that would likely not be trusted by flood management professionals are thus widely communicated to policy makers and the public, scientific credibility is put at risk, and maladaptation becomes more likely. Here, we call upon researchers to abandon the practice of bathtub modeling in flood risk studies, and for those involved in the peer‐review process to ensure the conclusions of impact analyses are consistent with the limitations of the assumed flood physics. We document biases and uncertainties from bathtub modeling in both coastal and inland geographies, and we present examples of physics‐based modeling approaches suited to large‐scale applications. Reducing biases and uncertainties in flood hazard estimates will sharpen scientific understanding of changing risks, better serve the needs of policy makers, enable news media to more objectively report present and future risks to the public, and better inform adaptation planning. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025